(47-1) 03 * << * >> * Russian * English * Content * All Issues

Spatial and time characteristics of a four-wave radiation converter in a parabolic waveguide with resonant nonlinearity
E.V. Vorobeva 1, V.V. Ivakhnik 1, D.R. Kapizov 1

Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 804 kB

DOI: 10.18287/2412-6179-CO-1199

Pages: 27-35.

Full text of article: Russian language.

Spatial and temporal characteristics of a degenerate four-wave converter in a multimode waveguide with resonant nonlinearity in a scheme with counter-pumping waves are analyzed using the time response function and the point spread function. For single-mode pump waves with equal mode numbers, the dependences of the time response width on the waveguide length, the intensity of the first pump waves, and the mode number in the mode expansion of the object wave amplitude are obtained for the four-wave converter. The greatest contribution to the object wave amplitude is shown to be from the waveguide mode whose number coincides with the mode number of single-mode pump waves. For the stationary model, taking into account the spatial structure of the Gaussian pump wave leads to a monotonous decrease with a decrease in the pump beam width, followed by a constant value of the PSF module width. With single-mode pump waves with equal mode numbers, An increase in the mode number of the pump waves leads to a redistribution of energy concentrated in the side maxima of the point signal image and improvement in the quality of the wavefront reversal for a model with single-mode pump waves with equal mode numbers.

four-wave converter of radiation, parabolic waveguide, resonant nonlinearity, point spread function, time response.

Vorobeva EV, Ivakhnik VV, Kapizov DR. Spatial and time characteristics of a four-wave radiation converter in a parabolic waveguide with resonant nonlinearity. Computer Optics 2023; 47(1): 27-35. DOI: 10.18287/2412-6179-CO-1199.


  1. Turitsyn SK, Bednyakova AE, Fedoruk MP, Papernyi SB, Clements WRL. Inverse four-wave mixing and self-parametric amplification in optical fibre. Nat Photonics 2015; 9: 608-664. DOI: 10.1038/NPHOTON.2015.150.
  2. Weng Y, He X, Wang J, Pan Z. All-optical ultrafast wavelength and mode converter based on intermodal four-wave mixing in few-mode fibers. Opt Commun 2015; 348: 7-12. DOI: 10.1016/j.optcom.2015.03.018.
  3. Nazemosadat E, Pourbeyram H, Mafi A. Phase matching for spontaneous frequency conversion via four-wave mixing in graded–index multimode optical fibers. J Opt Soc Am B 2016; 33(2): 144-150. DOI: 10.1364/JOSAB.33.000144.
  4. Anjum OF, Guasoni M, Horak P, Jung Y, Petropoulos P, Richardson DJ, Parmigiani F. Polarization insensitive four wave mixing based wavelength conversion in few-mode optical fibers. J Lightw Technol 2018; 36(17): 3678-3683. DOI: 10.1109/JLT.2018.2834148.
  5. Zhang H, Bigot-Astruc M, Bigot L, Sillard P, Fatome J. Multiple modal and wavelength conversion process of a 10-Gbit/s signal in a 6-LP-mode fiber. Opt Express 2019; 27(11): 15413-15425. DOI: 10.1364/OE.27.015413.
  6. Gupta R, Kaler RS. Nonlinear Kerr and intermodal four-wave mixing effect in mode-division multiplexed multimode fiber link. Opt Eng 2019; 58(3): 036108. DOI: 10.1117/1.OE.58.3.036108.
  7. Zhang H, Bigot-Astruc M, Sillard P, Fatome J. Spatially multiplexed picosecond pulse-train generation in a 6 LP mode fiber based on multiple four-wave mixings. Appl Opt 2019; 58(31): 8570-8576. DOI: 10.1364/AO.58.008570.
  8. Yuan J, Kang Z, Li F, Zhang X, Sang X, Zhou G, Wu Q, Yan B, Wang K, Yu C, Tam HY, Wai PKA. LDemonstration of intermodal four-wave mixing by femtosecond pulses centered at 1550 nm in an air-silica photonic crystal fiber. J Lightw Technol 2017; 35(12): 2385-2390. DOI: 10.1109/JLT.2017.2681183.
  9. Yulin AV, Skryabin DV, Russell PSJ. Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion. Opt Lett 2004; 29(20): 2411-2413. DOI: 10.1364/OL.29.002411.
  10. Esmaeelpour M, Essiambre RJ, Fontaine NK, Ryf R, Toulouse J, Sun Y, Lingle R. Power fluctuations of intermodal four-wave mixing in few-mode fibers. J Lightw Technol 2017; 35(12): 2429-2435. DOI: 10.1109/JLT.2017.2660459.
  11. Mondal P, Bhatia N, Mishra V, Haldar R, Varshney SK. Cascaded Raman and intermodal four-wave mixing in conventional non-zero dispersion-shifted fiber for versatile ultra-broadband continuum generation. J Lightw Technol 2018; 36(12): 2351-2357. DOI: 10.1109/JLT.2018.2809914.
  12. Guasoni M, Parmigiani F, Horak P, Fatome J, Richardson DJ. Intermodal four-wave mixing and parametric amplification in kilometer-long multimode fibers. J Lightw Technol 2017; 35(24): 5296-5305. DOI: 10.1109/JLT.2017.2767103.
  13. Trägårdh J, Pikálek T, Stibůrek M, Simpson S, Cifuentes A, Čižmár T. CARS microscopy through a multimode fiber probe with reduced four-wave mixing background. In: Biophotonics congress: Biomedical optics 2022 (Translational, Microscopy, OCT, OTS, BRAIN), Technical digest series (Optica Publishing Group, 2022) 2022: JM3A.43. DOI: 10.1364/TRANSLATIONAL.2022.JM3A.43.
  14. Voronin ES, Petnikova VM, Shuvalov VV. Use of degenerate parametric processes for wave front correction (review). Soviet Journal of Quantum Electronics 1981; 11(5): 551-561. DOI: 10.1070/QE1981v011n05ABEH006899.
  15. Barashkov MS, Matveev IN, Petnikova VM, Umnov AF, Ustinov ND, Shuvalov VV. Compensation of phase distortions in a single-transit wavefront-reversal system with a degenerate four-photon interaction. Soviet Journal of Quantum Electronics 1982; 12(11): 1524-1525. DOI: 10.1070/2FQE1982v012n11ABEH006186.
  16. Lukin VP. Adaptive optics in the formation of optical beams and images. Physics-Uspekhi 2014; 57(6): 556-592. DOI: 10.3367/UFNe.0184.201406b.0599.
  17. Lukin VP, Kanev FY, Kulagin OV. Possibilities of joint application of adaptive optics technique and nonlinear optical phase conjugation to compensate for turbulent distortions. Quantum Electron 2016; 46(5): 481-484. DOI: 10.1070/QEL15874.
  18. Zhou P, Fan D. Terahertz-wave generation by surface-emitted four-wave mixing in optical fiber. Chin Opt Lett 2011; 9(5): 051902. DOI: 10.3788/COL201109.051902.
  19. Pourbeyram H, Nazemosadat E, Mafi A. Detailed analysis of amplified spontaneous four-wave mixing in a multimode fiber. Frontiers in Optics 2015: FW5F.3. DOI: 10.1364/FIO.2015.FW5F.3.
  20. Chuprina IN, An PP, Zubkova EG, Kovalyuk VV, Kalachev AA, Goltsman GN. Optimisation of spontaneous four-wave mixing in a ring microcavity. Quantum Electron 2017; 47(10): 887-891. DOI: 10.1070/QEL16511.
  21. Lera G, Nieto-Vesperinas M. Phase conjugation by four-wave mixing of statistical beams. Phys Rev A 1990; 41(11): 6400-6405. DOI: 10.1103/PhysRevA.41.6400.
  22. Erokhin AI, Kovalev VI, Miheev PA, Faizullov FS. Quality of wavefront reversal of multifrequency radiation by four-wave interaction. Soviet Journal of Quantum Electronics 1985; 15(1): 116-119. DOI: 10.1070/QE1985v015n01ABEH005879.
  23. Ben' VN, Bondarenko SV, Ivakin EV, Rubanov AS. Influence of the angular selectivity on imaging properties of a four-wave wavefront-reversing mirror. Soviet Journal of Quantum Electronics 1987; 17(2): 239-241. DOI: 10.1070/QE1987v017n02ABEH007248.
  24. Arutunyan VM, Agadjanyan SA, Muradyan A, Oganyan AA, Papazyan TA. Efficiency and quality investigation of the phase conjugation of degenerate four-wave parametric mixing of picosecond pulses in a resonance dye. Opt Commun 1984; 50(3): 123-126. DOI: 10.1016/0030-4018(84)90148-2.
  25. Il'inykh PN, Kovalev VI, Suvorov MB. Spatial characteristics of a beam and quality of phase conjugation of radiation from a CO2 laser with InAs in its resonator. Soviet Journal of Quantum Electronics 1990; 20(6): 609-612. DOI: 10.1070/QE1990v020n06ABEH006623.
  26. Ivleva LI, Korol'kov SA, Lyubomudrov OV, Mamaev AV, Polozkova NM, Shkunov VV. Efficiency and quality of four-wave phase conjugation of a signal with a time-dependent spatial structure. Quantum Electron 1995; 25(3), 247-251. DOI: 10.1070/QE1995v025n03ABEH000336.
  27. Ill'inskii YA, Petnikova VM. Influence of linear filtering on wavefront reconstruction. Soviet Journal of Quantum Electronics 1980; 10(2): 250-252. DOI: 10.1070/QE1980v010n02ABEH009960.
  28. Kirsanov AV, Yarovoi VV. Phase conjugation of a speckle-inhomogeneous beam by an Nd glass oscillator based on four-wave mixing with feedback. Quantum Electron 1997; 27(3): 239-244. DOI: 10.1070/QE1997v027n03ABEH000910.
  29. Betin AA, Ergakov KV, Mitropol'skii OV. Reflection of speckle-inhomogeneous CO2 laser radiation under four-wave interaction conditions with feedback. Quantum Electron 1994; 24(1): 59-62. DOI: 10.1070/QE1994v024n01ABEH000020.
  30. Dmitriev VG. Nonlinear optics and wavefront reversal [In Russian]. Moscow: "Fizmatlit" Publisher; 2003. ISBN: 5-9221-0080-7.
  31. Ivakhnik VV. Wavefront reversal at four-wave interactions [In Russian]. Samara: Samara State University; 2010. ISBN: 978-5-86465-471-2.
  32. Akimov AA, Vorobeva EV, Ivakhnik VV. The time response of a four-wave converter of radiation on thermal nonlinearity [In Russian]. Computer Optics 2011; 35(4): 462-466.
  33. Ivakhnik VV, Savelyev MV. Four-wave mixing in a transparent medium based on electrostriction and Dufour effect at large reflectance. Physics Procedia 2015; 73: 26-32. doi: 10.1016/j.phpro.2015.09.117.
  34. Akimov AA, Ivakhnik VV, Nikonov VI. Four-wave interaction on resonance and thermal nonlinearities in a scheme with concurrent pump wavesat high conversion coefficients. Radiophysics and Quantum Electronics 2015; 57: 672-679. doi: 10.1007/s11141-015-9553-x.
  35. Vorobieva EV, Ivakhnik VV, Luneva MV. Time dependence of the point spread function of a four-wave converter in a waveguide with thermal nonlinearity [In Russian]. Vestnik of Samara University, Natural Science Series 2014; 10(121): 130-139. DOI: 10.18287/2541-7525-2014-20-10-130-139.
  36. Ivakhnik VV, Kapizov DR, Nikonov VI. Four-wave interaction in a multimode waveguide with a thermal nonlinearity in a circuit with codirectional pumping waves [In Russian]. Physics of Wave Processes and Radio Systems 2020; 23(3): 27-33. DOI: 10.18469/1810-3189.2020.23.3.27-33.
  37. Vorobyeva EV, Ivakhnik VV, Kaurov AV. The spatial characteristics of a four-wave converter of radiation in multimode waveguide with resonant nonlinearity. Physics of Wave Processes and Radio Systems 2018; 21(1): 4-11.
  38. Ivakhnik VV, Kapizov DR, Nikonov VI. Quality of wavefront reversal for four-wave interaction in a multimode waveguide with thermal nonlinearity. Computer Optics 2022; 46(1): 48-55. DOI: 10.18287/2412-6179-CO-1011.
  39. Vinogradova MB, Rudinko OV, Sukhorukov AP. Theory of waves [In Russian]. Moscow: URSS Publisher; 2019. ISBN: 978-5-9710-6283-7.
  40. Tikhonov EA, Shpak MT. Nonlinear optical phenomena in organic compounds [In Russian]. Kiev: "Naukova Dumka" Publisher; 1984.
  41. Adams MJ. An introduction to optical waveguide. New York: John Wiley and Sons Ltd; 1981.
  42. Slyusareva E, Gerasimova M, Plotnikov A, Sizykh A. Spectral study of fluorone dyes sorption on chitosan-based polyelectrolyte complexes. J Colloid Interface Sci 2014; 417: 80-87. DOI: 10.1016/j.jcis.2013.11.016.
  43. Zel'dovich BY, Pilipetskii NF, Shkunov VV. Wavefront reversal [In Russian]. Moscow: "Nauka" Publisher; 1985.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20