(47-1) 04 * << * >> * Russian * English * Content * All Issues

Reverse energy flow in vector modes of optical fibers
S.S. Stafeev 1,2, A.D. Pryamikov 3, G.K. Alagashev 3, V.V. Kotlyar 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34;
Prokhorov General Physics Institute of the Russian Academy of Sciences, 119333, Moscow, Russia, 38 Vavilov street

 PDF, 849 kB

DOI: 10.18287/2412-6179-CO-1229

Pages: 36-39.

Full text of article: Russian language.

In this paper, the propagation of a second-order cylindrical vector beam in gradient-index and microstructured fibers is numerically simulated using the RSoft Fullwave software. The second-order vector beams are shown to be vector modes of these fibers. In the calculated fundamental modes, regions are found in which there is an energy flow directed oppositely to the beam propagation direction (regions of a reverse energy flow). The absolute value of the longitudinal component of the reverse energy flow is found to be much lower than that of the forward flow.

reverse energy flow, vector mode, polarization vortex, microstructured fiber.

Stafeev SS, Pryamikov AD, Alagashev GK, Kotlyar VV. Reverse energy flow in vector modes of optical fibers. Computer Optics 2023; 47(1): 36-39. DOI: 10.18287/2412-6179-CO-1229.

This work was supported by the Russian Science Foundation (Project No. 22-22-00575).


  1. Hadžievski L, Maluckov A, Rubenchik AM, Turitsyn S. Stable optical vortices in nonlinear multicore fibers. Light Sci Appl 2015; 4(8): e314-e314. DOI: 10.1038/lsa.2015.87.
  2. Tu J, Liu Z, Gao S, Wang Z, Zhang J, Zhang B, Li J, Liu W, Tam H, Li Z, Yu C, Lu C. Ring-core fiber with negative curvature structure supporting orbital angular momentum modes. Opt Express 2019; 27(15): 20358-20372. DOI: 10.1364/OE.27.020358.
  3. Wu Y, Wen J, Zhang M, Cao Y, Chen W, Zhang X, Yusufu T, Pang F, Wang T. Low-loss and helical-phase-dependent selective excitation of high-order orbital angular momentum modes in a twisted ring-core fiber. Opt Lett 2022; 47(16): 4016-4019. DOI: 10.1364/ol.468259.
  4. Mao D, Zheng Y, Zeng C, Lu H, Wang C, Zhang H, Zhang W, Mei T, Zhao J. Generation of polarization and phase singular beams in fibers and fiber lasers. Adv Photonics 2021; 3: 014002. DOI: 10.1117/1.AP.3.1.014002.
  5. Li S, Wang J. Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing. IEEE Photonics J 2013; 5(5): 7101007. DOI: 10.1109/JPHOT.2013.2272778.
  6. Ma M, Lian Y, Wang Y, Lu Z. Generation, transmission and application of orbital angular momentum in optical fiber: A review. Front Phys 2021; 9: 1-17. DOI: 10.3389/fphy.2021.773505.
  7. Ung B, Vaity P, Wang L, Messaddeq Y, Rusch LA, LaRochelle S. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes. Opt Express 2014; 22(15): 18044-18055. DOI: 10.1364/oe.22.018044.
  8. Brunet C, Vaity P, Messaddeq Y, LaRochelle S, Rusch LA. Design, fabrication and validation of an OAM fiber supporting 36 states. Opt Express 2014; 22(21): 26117-26127. DOI: 10.1364/OE.22.026117.
  9. Jin X, Gomez A, Shi K, Thomsen BC, Feng F, Gordon GSD, Wilkinson TD, Jung Y, Kang Q, Barua P,Sahu JK, Alam S, Richardson DJ, O'Brien DC, Payne FP. Mode coupling effects in ring-core fibers for space-division multiplexing systems. J Lightw Technol 2016; 34: 3365-3372. DOI: 10.1109/JLT.2016.2564991.
  10. Jung Y, Kang Q, Zhou H, Zhang R, Chen S, Wang H, Yang Y, Jin X, Payne FP, Alam S, Richardson DJ. Low-loss 25.3 km few-mode ring-core fiber for mode-division multiplexed transmission. J Lightw Technol 2017; 35(8): 1363-1368. DOI: 10.1109/JLT.2017.2658343.
  11. Li H, Ren G, Lian Y, Zhu B, Tang M, Zhao Y, Jian S. Broadband orbital angular momentum transmission using a hollow-core photonic bandgap fiber. Opt Lett 2016; 41(15): 3591-3594. DOI: 10.1364/ol.41.003591.
  12. Li H, Ren G, Zhu B, Gao Y, Yin B, Wang J, Jian S. Guiding terahertz orbital angular momentum beams in multimode Kagome hollow-core fibers. Opt Lett 2017; 42(2): 179-182. DOI: 10.1364/ol.42.000179.
  13. Sharma M, Pradhan P, Ung B. Endlessly mono-radial annular core photonic crystal fiber for the broadband transmission and supercontinuum generation of vortex beams. Sci Rep 2019; 9(1): 2488. DOI: 10.1038/s41598-019-39527-1.
  14. Bai X, Chen H, Yang H. Design of a circular photonic crystal fiber with square air-holes for orbital angular momentum modes transmission. Optik 2018; 158: 1266-1274. DOI: 10.1016/j.ijleo.2018.01.015.
  15. Wang W, Sun C, Wang N, Jia H. A design of nested photonic crystal fiber with low nonlinear and flat dispersion supporting 30+50 OAM modes. Opt Commun 2020; 471: 125823. DOI: 10.1016/j.optcom.2020.125823.
  16. Zhang H, Zhang X, Li H, Deng Y, Zhang X, Xi L, Tang X, Zhang W. A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission. Opt Commun 2017; 397: 59-66. DOI: 10.1016/j.optcom.2017.03.075.
  17. Kotlyar VV, Stafeev SS, Nalimov AG. Energy backflow in the focus of a light beam with phase or polarization singularity. Phys Rev A 2019; 99(3): 033840. DOI: 10.1103/PhysRevA.99.033840.
  18. Stafeev SS, Kotlyar VV, Nalimov AG, Kozlova ES. The non-vortex inverse propagation of energy in a tightly focused high-order cylindrical vector beam. IEEE Photonics J 2019; 11(4): 4500810. DOI: 10.1109/JPHOT.2019.2921669.
  19. Egorova ON, Semjonov SL, Kosolapov AF, Denisov AN, Pryamikov AD, Gaponov DA, Biriukov AS, Dianov EM, Salganskii MY, Khopin VF,Yashkov MV, Gurianov AN, Kuksenkov DV. Single-mode all-silica photonic bandgap fiber with 20-μm mode-field diameter. Opt Express 2008; 16(16): 11735-11740. DOI: 10.1364/OE.16.011735.
  20. Tandjè A, Yammine J, Dossou M, Bouwmans G, Baudelle K, Vianou A, Andresen ER, Bigot L. Ring-core photonic crystal fiber for propagation of OAM modes. Opt Lett 2019; 44(7): 1611-1614. DOI: 10.1364/OL.44.001611.
  21. Mikaelian AL. Using a layered medium to focus waves. Doklady Akademii Nauk 1951; 81: 569-571.
  22. Stafeev SS, Kozlova ES, Nalimov AG. Focusing a second-order cylindrical vector beam with a gradient index Mikaelian lens. Computer Optics 2020; 44: 29-33. DOI: 10.18287/2412-6179-CO-633.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20