(47-1) 07 * << * >> * Russian * English * Content * All Issues

Computational and experimental studies on SnO2 thin films at various temperatures
K. Gurushankar 1,2, M. Grishina 1, M. Gohulkumar 3, K. Kannan 4

Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School,
454080, Russia, Chelyabinsk, South Ural State University;
Department of Physics, Kalasalingam Academy of Research and Education,
626126, Krishnankoil, Tamilnadu, India;
Vivekanandha College of Arts and Science for Women, Tiruchengode, Tamil Nadu, India;
School of Advanced Materials Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro,
Gumi-si, Gyeongbuk, Republic of Korea

 PDF, 1502 kB

DOI: 10.18287/2412-6179-CO-1151

Pages: 53-61.

Full text of article: English language.

Tin oxide (SnO2) thin films was prepared by dip-coating technique at various bath temperatures (313, 333, 353 and 373 K) and annealed at 673 K in this study. And the obtained results were studied and correlated with the computational method. Scanning electron microscopy (SEM) investigation demonstrated that the prepared samples are spherical with agglomeration. The elemental analysis (EDAX) confirms the presence of Sn and O. Further, the SnO2 thin films microstructures are simulated, their thermodynamic and surface properties have been calculated. Micro-Raman spectra were recorded for the prepared samples. Micro-Raman results exhibit the first-order Raman mode E1gsub> (475 cm−1) indicating that the grown SnO2 belongs to the rutile structure. In addition, the envelope method used for studying optical characteristics of the thin films from the transmittance spectra. The semiconducting nature of the films has been noticed from linear I-V characteristics. Furthermore, the electrical conductivity studies suggest that the highest conductivity samples acquire the lowest activation energy and their values are also in the semiconducting range.

SnO2 thin films, dip-coating technique, computational method, thermodynamic and surface characteristics, gibbs free energy and electrical conductivity.

Gurushankar K, Grishina M, Gohulkumar M, Kannan K. Computational and experimental studies on SnO2 thin films at various temperatures. Computer Optics 2023; 47 (1): 53-61. DOI: 10.18287/2412-6179-CO-1151.



  1. Mazur M, Domaradzki J, Wojcieszak D. Optical and electrical properties of (Ti-V)Ox thin film as n-type Transparent Oxide Semiconductor. B Pol Acad Sci-Tech 2014; 62: 583-588. DOI: 10.2478/bpasts-2014-0063.
  2. Karthik K, Pushpa S, Madhukara Naik M, Vinuth M. Influence of Sn and Mn on structural, optical and magnetic properties of spray pyrolysed CdS thin films. Mater Res Innov 2020; 24: 82-86. DOI: 10.1080/14328917.2019.1597436.
  3. Pakiyaraj K, Kirthika V, Karthik K. Effect of annealing on the structural, morphological, optical and electrical properties of Al-Zn co-doped SnO2 thin films. Mater Res Innov 2020; 24: 193-201. DOI: 10.1080/14328917.2019.1628498.
  4. Baden AD, Cox PA, Egdell RG, Orchard AF, Willmer RJD. Observation of surface optical phonons on SrTiO3(100). J Phys C 1981; 14: 1081-1084. DOI: 10.1088/0022-3719/14/34/003.
  5. Diallo A, Manikandan E, Rajendran V, Maaza M. Physical & enhanced photocatalytic properties of green synthesized SnO2 nanoparticles via Aspalathus linearis. J Alloys Compd 2016; 681: 561-570. DOI: 10.1016/j.jallcom.2016.04.200.
  6. Caglar Y, Caglar M, Ilican S, Yakuphanoglu F. Determination of the electronic parameters of nanostructure SnO2/pSi diode. Microelectron Eng 2009; 86: 2072-2077. DOI: 10.1016/j.mee.2009.01.062.
  7. Ravikumar K, Agilan S, Muthukumarasamy N, Raja M, Lakshmanan R, Ganesh R. Influence of annealing temperature on structural and dc electrical properties of SnO2 thin films for schottky barrier diodes. Silicon 2018; 10: 1591-1599. DOI: 10.1007/s12633-017-9643-9.
  8. Dang HP, Luc QH, Le VH, Le T. The influence of deposition temperature and annealing temperature on Ga-doped SnO2 films prepared by direct current magnetron sputtering. J Alloy Compd 2016; 687: 1012-1020. DOI: 10.1016/j.jallcom.2016.06.236.
  9. Remes Z, Vanecek M, Yates HM, Evans P, Sheel DW. Optical properties of SnO2:F films deposited by atmospheric pressure CVD. Thin Solid Films 2009; 517: 6287-6289. DOI: 10.1016/j.tsf.2009.02.109.
  10. Choi M-J, Cho CJ, Kim K-C, Pyeon JJ, Park H-H, Kim H-S, Han JH, Kim CG, Chung T-M, Park TJ, Kwon B, Jeong DS, Baek S-H, Kang C-Y, Kim J-S, Kim SK. SnO2 thin films grown by atomic layer deposition using a novel Sn precursor. Appl Surf Sci 2014; 320: 188-194. DOI: 10.1016/j.apsusc.2014.09.054.
  11. Kim GW, Sung CH, Anwar MS, Seo YJ, Heo SN, Park KY, Song TK, Koo BH. Effect of trivalent element doping on structural and optical properties of SnO2 thin films grown by pulsed laser deposition technique. Curr Appl Phys 2012; 12: S21-S24. DOI: 10.1016/j.cap.2012.05.041.
  12. Abdelkrim A, Rahmane S, Abdelouahab O, Abdelmalek N, Brahim G. Effect of solution concentration on the structural, optical and electrical properties of SnO2 thin films prepared by spray pyrolysis. Optik 2016; 127: 2653-2658. DOI: 10.1080/14328917.2019.1628498.
  13. Al-Jawad SMH. Influence of multilayer deposition on characteristics of nanocrystalline SnO2 thin films produce by sol-gel technique. Optik 2017; 146: 17-26. DOI: 10.1016/j.ijleo.2017.08.053.
  14. Carvalho DHQ, Schiavon MA, Raposo MT, de Paiva R, Alves JLA, Paniago RM, Speziali NL, Ferlauto AS, Ardisson JD. Synthesis and characterization of SnO2 thin films prepared by dip-coating method. Physics Procedia 2012; 28: 22-27. DOI: 10.1016/j.phpro.2012.03.664.
  15. Gurushankar K, Gohulkumar M, Viswanathan K, Revathy MS, Jeyavijayan S. Structural analysis of SnO2 thin films at various temperatures (313, 333, 353 and 373 K). International Journal of Recent Technology and Engineering 2019; 8: 914-916.
  16. Sivasenthil E, Senthilkumar V. Electrical characterization of tin oxide thin films prepared by dip coating technique. Int J Innov Res Technol Sci Eng 2016; 5: 14651-14655.
  17. Acciarri M, Canevali C, Mari CM, Mattoni M, Ruffo R, Scotti R, Morazzoni F, Barreca D, Armelao L, Tondello E, Bontempi E, Depero LE. Nanocrystalline SnO2-based thin films obtained by sol-gel route: A morphological and structural investigation. Chem Mater 2003; 15: 2646-2650. DOI: 10.1021/cm031002w.
  18. Manakov AY, Likhacheva AY, Potemkin VA, Ogienko AG, Kurnosov AV, Ancharov AI. Compressibility of gas hydrates. ChemPhysChem 2011; 12: 2476-2484. DOI: 10.1002/cphc.201100126.
  19. Aladko EY, Ancharov AI, Goryainov SV, Kurnosov AV, Larionov EG, Likhacheva AY, Manakov AY, Potemkin VA, Sheromov MA, Teplykh AE, Voronin VI, Zhurko FV. New type of phase transformation in gas hydrate forming system at high pressures. Some experimental and computational investigations of clathrate hydrates formed in the SF6-H2O system. J Phys Chem B 2006; 110: 21371-21376. DOI: 10.1021/jp061698r.
  20. Sukharev YI, Potemkin VA, Markov BA. Autowave processes of forming gels as a cause of the coloring of oxyhydrate gels (the chromatic effect) of some rare earth metals (yttrium, gadolinium). Colloids Surf A 2001; 194: 75-84. DOI: 10.1016/S0927-7757(01)00757-9.
  21. Potemkin VA, Maksakov VA, Kirin VP. Conformational States of triosmium clusters with aminoacid ligands: A theoretical study. J Struct. Chem 2003; 44: 741-747. DOI: 10.1023/B:JORY.0000029809.88411.8b.
  22. Korenev VS. Kirin VP, Maksakov VA, Virovets AV, Tkachev SV, Potemkin VA, Agafontsev AM, Tkachev AV. Triosmium cluster with the bridging aminooxime derivative of pinane: synthesis, crystal structure and conformational analysis. Russ J Coord Chem 2007; 33: 594-600. DOI: 10.1134/S1070328407080088.
  23. Bannikov VV, Shein IR, Kozhevnikov VL, Ivanovskii AL. Electronic structure and magnetic properties of double perovskites Sr2FeMO6 (M = Sc, Ti,...,Ni, Cu) according to the data of FLAPW-GGA band structure calculations. J Struct Chem 2008; 49: 781-787. DOI: 10.1007/s10947-008-0139-8.
  24. Maksakov VA, Pervukhina NV, Podberezskaya NV, Afonin MY, Potemkin VA, Kirin VP. X-ray and conformation analysis of the new trinuclear cluster of osmium Os3 (μ, η2-OCC6H5) (η3-C3H5) (CO)9. J Struct Chem 2008; 49: 894-900. DOI: 10.1007/s10947-008-0154-9.
  25. Kuzmicheva GA, Jayanna PK, Eroshkin AM, Grishina M A, Pereyaslavskaya ES, Potemkin VA, Petrenko VA. Mutations in fd phage major coat protein modulate affinity of the displayed peptide. Protein Eng Des Sel 2009; 22: 631-639. DOI: 10.1093/protein/gzp043.
  26. Potemkin VA, Ivshina NN, Maksakov VA. Theoretical study of the conformational features of triosmium clusters. J Struct Chem 2009; 50: 143-151. DOI: 10.1007/s10947-009-0202-0.
  27. Ivshina NN, Bartashevich EV, Potemkin VA, Grishina MA, Ishmetova RI, Rusinov GL, Latosh NI, Slepukhin P, Charushin VN. Changes in the vibrational characteristics of substituted 1,2,4,5-tetrazines after complexation with 1,2,3- benzotriazole: A theoretical study. J Struct Chem 2010; 50: 1053-1058. DOI: 10.1007/s10947-009-0155-3.
  28. Potemkin VA, Krasnov VP, Levit GL, Bartashevich EV, Andreeva IN, Kuzminsky MB, Anikin NA, Charushin V N, Chupakhin ON. Kinetic resolution of (±)-2,3-dihydro-3-methyl-4H-1,4-benzoxazine in the reaction with (S)-naproxen chloride: a theoretical study. Mendeleev Commun 2004; 14: 69-70. DOI: 10.1070/MC2004v014n02ABEH001887.
  29. ChemoSophia. Source: <http://www.chemosophia.com/>.
  30. Potemkin VA, Maksakov VA, Korenev VS. Theoretical study of the conformational states of triosmium clusters with a chiral pinane ligand. J Struct Chem 2005; 46: 43-48. DOI: 10.1007/s10947-006-0007-3.
  31. Sukharev YI, Avdin VV, Lymar AA, Belkanova MY, Potemkin VA. Directions in structure formation of oxyhydrate gels of zirconium and rare earth elements. J Struct Chem 2006; 47: 151-155. DOI: 10.1007/s10947-006-0280-1.
  32. Potemkin VA, Maksakov VA, Korenev VS. Theoretical study of the conformational states of triosmium clusters with a chiral µ-1-NH pinane ligand. J Struct Chem 2007; 48: 225-230. DOI: 10.1007/s10947-007-0036-6.
  33. Avdin VV, Lymar AA, Batist AV, Nikitin EA, Belkanova MY, Potemkin VA, Structure formation in heavy metal oxyhydrates at low rates of gel formation. J Struct Chem 2007; 48: 747-752. DOI: 10.1007/s10947-007-0114-9.
  34. Shchelokov A, Palko N, Potemkin V, Grishina M, Morozov R, Korina E, Uchaev D, Krivtsov I, Bol'shakov O.  Adsorption of native amino acids on nanocrystalline TiO2: physical chemistry, QSPR, and theoretical modeling. Langmuir 2019; 35: 538-550. DOI: 10.1021/acs.langmuir.8b02007.
  35. Moman E, Grishina MA, Potemkin VA. Nonparametric chemical descriptors for the calculation of ligand-biopolymer affinities with machine-learning scoring functions. J Comp-Aid Mol Des 2019; 33: 943-953. DOI: 10.1007/s10822-019-00248-2.
  36. Korina E, Naifert S, Morozov R, Potemkin V, Bol'shakov O. Study of short peptide adsorption on solution dispersed inorganic nanoparticles using depletion method. JoVE 2020; 158: e60526. DOI: 10.3791/60526.
  37. Matei ghimbeu C, Van landschoot RC, Schoonman J. Preparation and characterization of SnO2 and Cu-doped SnO2 thin films using electrostatic spray deposition (ESD). J Eur Cer Soc 2007; 2: 207-213. DOI: 10.1016/j.jeurceramsoc.2006.05.092.
  38. Bockmeyer M, Löbmann P. Crack formation in TiO2 films prepared by sol–gel processing: Quantification and characterization. Thin Solid Films 2007; 515: 5215-5219. DOI: 10.1016/j.tsf.2006.11.193.
  39. John VS, Mahalingam T, Chu JP. Synthesis and characterization of copper doped zinc telluride thin films. Solid State Electronics 2005; 49: 3-7. DOI: 10.1016/j.sse.2004.07.015.
  40. Abdelaziz M, Ghannam MM. Influence of titanium chloride addition on the optical and dielectric properties of PVA films. Physica B 2010; 405: 958-964. DOI: 10.1016/j.physb.2009.10.030.
  41. Majumder S. Synthesis and characterisation of SnO2 films obtained by a wet chemical process. Materials Science-Poland 2009; 27: 123-129.
  42. Verma A, Khare PK, Srivastava RK. Electrode effect on electrical conduction in thin film of polyvinyl pyrrolidone. Indian J Pure Appl Phys 2009; 47: 737-744.
  43. Ramu C, Naidu YRV, Sharma AK. Dielectric relaxation in iodine doped cellulose acetate films. Ferroelectrics 1994; 159: 275-280. DOI: 10.1080/00150199408007585.
  44. Abd-El Kader FH, Osman WH, Hafez RS. DC conduction mechanism and dielectric properties of Poly (methyl methacrylate)/Poly (vinyl acetate) blends doped and undoped with malachite green. Physica B 2013; 408: 140-150. DOI: 10.1016/j.physb.2012.09.027.
  45. Jonscher AK, Ansari AA. Photo-currents in silicon monoxide films. Phil Mag 1971; 23: 205-223. DOI: 10.1080/14786437108216374.
  46. Perlam MM. Thermal currents and the internal polarization in carnauba wax electrets. J Appl Pys 1971; 42: 2645.
  47. Tiwari A, Singh S. Synthesis and characterization of electrical conducting chitosan-graft-polyaniline. Exp Polym Lett 2007; 1: 308-317. DOI: 10.3144/expresspolymlett.2007.44.
  48. Xi L, Qian D, Tang X, Chen C. High surface area SnO2 nanoparticles: synthesis and gas sensing properties. Mater Chem Phys 2008; 108: 232-236. DOI: 10.1016/j.matchemphys.2007.09.023.
  49. Sangeetha P, Sasirekha V, Ramakrishnana V. Micro-Raman investigation of tin dioxide nanostructured material based on annealing effect. J Raman Spectrosc 2011; 42: 1634-1639. DOI: 10.1002/jrs.2919.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20