Vortex beams in turbulent media: review
V.A. Soifer
, О. Korotkova, S.N. Khonina, Е.А. Shchepakina


Samara National Research University, Samara, Russia,
Image Processing Systems Institute оf RAS, – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,

University of Miami, Florida, USA

Full text of article: English language.


The review covers publications concerned with propagation of laser beams through turbulent media described by the Kolmogorov theory and generalizations thereof to describe signal transmission in optical communications and detection systems. In this case, the turbulent medium is interpreted as an optical channel with random parameters. Various optical signals considered include partially coherent beams, non-uniformly polarized vector beams, as well as specifically configured spatial laser beams. Special attention is given to vortex laser beams. The latter are shown to have a number of remarkable properties that give them an advantage over conventional Gaussian beams.

turbulent media, optical signals, vortex laser beams, free-space optics communication systems, diffractive optical elements.

Soifer VA, Korotkova О, Khonina SN, Shchepakina ЕА. Vortex beams in turbulent media: review. Computer Optics 2016; 40(5): 605-624. DOI: 10.18287/2412-6179-2016-40-5-605-624.


  1. Wang F, Liu X, Cai Y. Propagation of partially coherent beam in turbulent atmosphere: a review (invited review). Progress in Electromagnetics Research 2015; 150: 123-143. DOI: 10.2528/PIER15010802.
  2. Korotkova O. Random light beams: theory and applications. Boca Raton, FL: CRC Press, Taylor & Francis Group; 2013. ISBN 978-1-4398-1950-0.
  3. Majumdar AK, Ricklin JC. Free-space laser communications: principles and advances. Volume 2. New York: Springer Science & Business Media; 2008.
  4. Mishchenko MI, Travis LD, Lacis AA. Scattering, Absorption, and Emission of Light by Small Particles. Cambridge: Cambridge University Press; 2002.
  5. Isumaru A. Wave Propagation and Scattering in Random media, John Wiley & Sons; 1999. ISBN: 978-0-7803-4717-5.
  6. Andrews LC, Phillips RL. Laser beam propagation in random media. 2nd ed. Bellingham, Washington: SPIE Optical Engineering Press; 2005. ISBN: 0-8194-5948-8.
  7. Soskin MS, Vasnetsov MV. Singular optics. In book: Wolf E, ed. Progress in Optics. Chapter 4. Amsterdam, North Holland: Elsevier Science; 2001: 219-276.
  8. Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner AE, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013; 340(6140): 1545-1548. DOI: 10.1126/science.1237861.
  9. Yan Y, Xie G, Lavery MPJ, Huang H, Ahmed N, Bao C, Ren Y, Cao Y, Li L, Zhao Z, Molisch AF, Tur M, Padgett MJ, Willner AE. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nature Communications 2014; 5876(5): 4876. DOI: 10.1038/ncomms5876.
  10. Gbur G, Tyson RK. Vortex beam propagation through atmospheric turbulence and topological charge conservation. J Opt Soc Am A 2008; 25: 225-230. DOI: 10.1364/JOSAA.25.000225.
  11. Wang T, Pu J, Chen Z. Beam-spreading and topological charge of vortex beams propagating in a turbulent atmosphere. Optics Communications 2009; 282(7): 1255-1259. DOI: 10.1016/j.optcom.2008.12.027.
  12. Malik M, O’Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery MPJ, Padgett MJ, Boyd RW. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Optics Express 2012; 20(12): 13195-13200. DOI: 10.1364/OE.20.013195.
  13. Khonina SN, Kotlyar VV, Soifer VA, Pääkkönen P, Simonen J, Turunen J. An analysis of the angular momentum of a light field in terms of angular harmonics. J Mod Opt 2001; 48(10): 1543-1557. DOI: 10.1080/09500340110047501.
  14. Khonina SN, Skidanov RV, Kotlyar VV, Soifer VA, Turunen J. DOE-generated laser beams with given orbital angular moment: application for micromanipulation. Proc SPIE 2005; 5962: 59622W. DOI: 10.1117/12.624751.
  15. Kotlyar VV, Soifer VA, Khonina SN. Rotation of Gauss-Laguerre multimodal light beams in free space. Tech Phys Lett 1997; 23(9): 657-658. DOI: 10.1134/1.1261648.
  16. Soifer VA, Kotlyar VV, Khonina SN. Optical microparticle manipulation: Advances and new possibilities created by diffractive optics. Physics of Particles and Nuclei 2004; 35(6): 733-766.
  17. Soifer VA, ed. Computer design of diffractive optics. Cambridge: Cambridge International Science Publishing Ltd. & Woodhead Pub. Ltd.; 2012.
  18. Bezus EA, Bykov DA, Doskolovich LL, Kovalev AA, Kotlyar VV, Nalimov AG, Porfirjev AP, Skidanov RV, Soifer VA, Stafeev SS, Khonina SN. Diffractive optics and nanophotonics. Ed. by Soifer VA. [In Russian]. Moscow: “Fizmatlit” Publisher; 2014. ISBN: 978-5-9221-1571-1.
  19. Banakh VA, Buldakov VM, Mironov VL. Intensity fluctuations of the partially coherent light-beam in a turbulent atmosphere. Opt Spektrosc 1983; 54(6): 1054-1059.
  20. Peleg A, Moloney JV. Scintillation index for two Gaussian laser beams with different wavelengths in weak atmospheric turbulence. J Opt Soc Am A 2006; 23(12): 3114-3122. DOI: 10.1364/JOSAA.23.003114.
  21. Banakh VA, Mironov VL. Lidar radiation propagation in the turbulent atmosphere [In Russian]. Novosibirsk: “Nauka” Publisher; 1986.
  22. Vinnichenko NK, Pinus NZ, Shmeter SM, Shur GN. Turbulence in a free atmosphere [In Russian]. Leningrad: “Gidrometeoizdat” Publisher; 1976.
  23. Landau LD, Lifshitz EM. Fluid Mechanics. Oxford: Pergamon Press; 1959.
  24. Tatarskii VI. Wave propagation in the turbulent atmosphere [In Russian]. Moscow: “Nauka” Publisher; 1967.
  25. Monin AS, Yaglom AM. Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence, Norwich, United Kingdom: Dover Publications; 2007. ISBN 978-0-486-45891-5.
  26. Kolmogorov AN. Local structure of turbulence in an compressible viscous fluid at very large Reynolds numbers [In Russian]. Doklady Akademii Nauk SSSR 1941; 30(4): 299-303.
  27. Kolmogorov AN. Selected works of A.N. Kolmogorov. Vol. I: Mathematics and Mechanics. Edited by Tikhomirov VM. Dordrecht: Kluwer; 1991.
  28. Shiryaev AN, ed. Kolmogorov (Dedicated to the 100th birthday of A.N. Kolmogorov, in 3 volumes). Vol. I: Biobibliography. Moscow: “Fizmatlit” Publisher; 2003
  29. Lapin YuV. Statistical theory of turbulence: the past and the present (short sketch of the ideas) [In Russian]. Scientific and technical sheets 2004; 2(36): 7-20.
  30. Zuev VE. Propagation of laser radiation in the atmosphere [In Russian]. Moscow: “Radio I Svyaz” Publisher; 1981.
  31. Obukhov AM. On the energy distribution in the spectrum of a turbulent flow [In Russian]. Doklady Akademii Nauk SSSR 1941; 32(1): 22-24.
  32. Kolmogorov AN. Equations of turbulent motion of an incompressible fluid [In Russian]. Izvesia Academii Nauk USSR, seria Fizicheskaya 1942; 6(1-2): 56-58.
  33. Turbulence. Source:áhttp://femto.com.ua/articles/part_2/ 4173.htmlñ.
  34. Landau LD. On the problem of a turbulence [In Russian]. Doklady Akademii Nauk SSSR 1944; 44(8): 339-342.
  35. Hopf E. A mathematical example displaying the features of turbulence. Communications on Pure and Applied Mathematics 1948; 1(4): 303-322.
  36. Monin AS, Obukhov AM. Dimensionless characteristics of turbulence in the atmospheric surface layer [In Russian]. Doklady Akademii Nauk SSSR 1953; 93(2): 223-226.
  37. Monin AS. The structure of atmospheric turbulence. Theory of Probability & Its Applications 1958; 3(3): 266-296. DOI: 10.1137/1103023.
  38. Monin A. Structure of wind velocity and temperature fields in the ground surface layer. Trudy lnstitut fiziki atmosfery 1962; 4: 5-20.
  39. Yaglom AM. Acceleration field in a turbulent flow [In Russian]. Doklady Akademii Nauk SSSR 1949; 67(5): 795-798.
  40. Yaglom AM. Local structure of the temperature field in a turbulent flow [In Russian]. Doklady Akademii Nauk SSSR 1949; 69(6): 743-746.
  41. Goldstein S, ed. Modern Developments in Fluid Dynamics: An Account of Theory and Experiment Relating to Boundary Layers, Turbulent Motion and Wakes. In 2 Volumes. Oxford; 1938.
  42. Prandtl L. Uber ein neues Formelsystem fur die ausgebildete Turbulenz. Nachr Acad Wiss Göttingen, Math Phys Klasse 1945, 6-19.
  43. Monin AS. Dynamical turbulence in the atmosphere [In Russian]. Izvestia Akademii Nauk SSSR, Seria Geograficheskaya i Geofizicheskaya 1950; 14(3): 232-254.
  44. Barenblatt GI. On the motion of suspended particles in a turbulent flow [In Russian]. Prikladnaya Matematika i Mekhanika 1953; 17(3): 261-274.
  45. Barenblatt GI. On the motion of suspended particles in a turbulent flow in a half-space or a plane open channel of finite depth [In Russian]. Prikladnaya Matematika i Mekhanika 1955; 19(1): 61-88.
  46. Barenblatt GI, Golitsyn GS. A local structure of the developed dust storms [In Russian]. Moscow: Moscow State University Publisher; 1973.
  47. Prandtl L. Uber ein neues Formelsystem fur die ausgebildete Turbulenz. Nachr Acad Wiss Göttingen, Math Phys Klasse 1945, 6-19.
  48. Monin AS. Dynamical turbulence in the atmosphere [In Russian]. Izvestia Akademii Nauk SSSR, Seria Geograficheskaya i Geofizicheskaya 1950; 14(3): 232-254.
  49. Barenblatt GI. On the motion of suspended particles in a turbulent flow [In Russian]. Prikladnaya Matematika i Mekhanika 1953; 17(3): 261-274.
  50. Barenblatt GI. On the motion of suspended particles in a turbulent flow in a half-space or a plane open channel of finite depth [In Russian]. Prikladnaya Matematika i Mekhanika 1955; 19(1): 61-88.
  51. Barenblatt GI, Golitsyn GS. A local structure of the developed dust storms [In Russian]. Moscow: Moscow State University Publisher; 1973.
  52. Barenblatt GI. Similarity, self-similarity, and intermediate asymptotics [In Russian]. 2nd edition. Leningrad: “Gidrometeoizdat” Publisher; 1982.
  53. Barenblatt GI, Chorin AJ, Prostokishin VM. Scaling laws for fully developed turbulent flows in pipes. Applied Mechanics Reviews 1997; 50(7): 413-429.
  54. Barenblatt GI. Flow, deformation and fracture: Lectures on fluid mechanics and the mechanics of deformable solids for mathematicians and physicists. Cambridge: Cambridge University Press, 2014.
  55. Chorin A. Lecture II: Theories of turbulence. Lecture Notes in Mathematics 1977; 615: 36-47. DOI: 10.1007/BFb0068359.
  56. Barenblatt GI, Chorin AJ, Prostokishin VM. Turbulent flows at very large Reynolds numbers: new lessons learned. Physics – Uspekhi 2014; 57(3): 250-256. DOI: 10.3367/UFNe.0184.201403d.0265.
  57. Monin AS, Yaglom AM. On the laws of small-scale turbulent flow of liquids and gases [In Russian]. Russian Mathematical Surveys 1963; 18(5): 89-109. DOI: 10.1070/RM1963v018n05ABEH004133.
  58. Millionschikov MD. Decay of homogeneous isotropic turbulence in a viscous incompressible fluid [In Russian]. Doklady Akademii Nauk SSSR 1939; 22(5): 236-240.
  59. Millionschikov MD. On the theory of homogeneous isotropic turbulence [In Russian]. Doklady Akademii Nauk SSSR 1941; 32(9), 611-614.
  60. Zhu X, Kahn JM. Free-space optical communications through atmospheric turbulence channels. IEEE Trans Commun 2002; 50: 1293-1300.
  61. Goodman J. Statistical Optics. John Wiley & Sons; 2005.
  62. Andrews LC. An analytical model for the refractive index power spectrum and its application to optical scintillations in the atmosphere. J Mod Opt 1992; 39: 1849-1853.
  63. Hill RJ. Spectra of fluctuations in refractivity, temperature, humidity, and the temperature-humidity co-spectrum in the inertial and dissipation ranges. Radio Science 1978; 13: 953-961.
  64. Dalaudier F, Crochet M, Sidi C. Direct comparison between in situ and radar measurements of temperature fluctuation spectra: a puzzling results. Radio Science 1989; 24(3): 311-324. DOI: 10.1029/RS024i003p00311.
  65. Belen'kii MS, Barchers JD, Karis SJ, Osmon CL, Brown JM, Fugate RQ. Preliminary experimental evidence of anisotropy of turbulence and the effect of non-Kolmogorov turbulence on wavefront tilt statistics. Proc SPIE 1999; 3762: 396-406. DOI: 10.1117/12.363597.
  66. Joseph B, Mahalov A, Nicolaenko B, Tse KL. Variability of turbulence and its outer scales in a model tropopause jet. Journal of the Atmospheric Sciences 2004; 61: 621-643. DOI: 10.1175/1520-0469(2004)061<0621:VOTAIO>2.0.CO;2.
  67. Mahalov A, Nicolaenko B, Tse KL, Joseph B. Eddy mixing in jet-stream turbulence under stronger stratification. Geophysical Research Letters 2004; 31(23): L23111. DOI: 10.1029/2004GL021055.
  68. Zilberman A, Golbraikh E, Kopeika NS, Virtser A, Kupershmidt I, Shtemler Y. LIDAR study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov turbulence. Atmospheric Research 2008; 88: 66-77. DOI: 10.1016/j.atmosres.2007.10.003.
  69. Korotkova O, Farwell N, Mahalov A. The effect of the jet-stream on the intensity of laser beams propagating along slanted paths in the upper layers of the turbulent atmosphere. Waves in Random and Complex Media 2009; 19(4): 692-702. DOI: 10.1080/17455030903127653.
  70. Zilberman A, Golbraikh E, Kopeika NS. Propagation of electromagnetic waves in Kolmogorov and non-Kolmogorov atmospheric turbulence: three-layer altitude model. Appl Opt 2008: 47(34): 6385-6391. DOI: 10.1364/AO.47.006385.
  71. Toselli I, Andrews LC, Phillips RL, Ferrero V. Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence. Opt Eng 2008; 47(2): 026003. DOI: 10.1117/1.2870113.
  72. Rao C, Jiang W, Ling N. Spatial and temporal characterization of phase fluctuations in non-Kolmogorov atmospheric turbulence. J Mod Opt 2000; 47(6): 1111-1126. DOI: 10.1080/09500340008233408.
  73. Charnotskii MM. Intensity fluctuations of flat-topped be­am in non-Kolmogorov weak turbulence: comment. J Opt Soc Am A 2012; 29(9): 1838-1840. DOI: 10.1364/JO­SAA.29.001838.
  74. Consortini AA, Ronchi L, Stefanutti L. Investigation of atmospheric turbulence by narrow laser beams. Appl Opt 1970; 9(11): 2543-2547. DOI: 10.1364/AO.9.002543.
  75. Grechko GM, Gurvich AS, Kan V, Kireev SV, Savchenko SA. Anisotropy of spatial structures in the middle atmosphere. Adv Space Res 1992; 12: 169-175.
  76. Dalaudier F, Sidi C. Direct evidence of ‘Sheets’ in the atmospheric temperature field. J Atmos Sci 1994; 51: 237-248.
  77. Wang F, Korotkova O. Optical beam propagation in anisotropic atmospheric turbulence along horizontal paths. Opt Express: in press.
  78. Andrews LC, Phillips RL. Laser beam propagation in the turbulent atmosphere. 2nd ed. Bellington: SPIE Press; 2005.
  79. Gbur G, Korotkova O. Angular spectrum representation for propagation of arbitrary coherent and partially coherent beams through atmospheric turbulence. J Opt Soc Am A 2007; 24(3): 745-752. DOI: 10.1364/JOSAA.24.000745.
  80. Shirai T, Dogariu A, Wolf E. Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence. J Opt Soc Am A 2003; 20(6): 1094-1102. DOI: 10.1364/JOSAA.20.001094.
  81. Mandel L, Wolf E. Optical Coherence and Quantum Optics. Cambridge: Cambridge University Press; 1995.
  82. Korotkova O, Shchepakina E. Color changes in stochastic light fields propagating in non-Kolmogorov turbulence. Opt Lett 2010; 35(22): 3772-3774. DOI: 10.1364/OL.35.003772.
  83. Korotkova O, Pu J, Wolf E. Spectral changes of stochastic electromagnetic beams propagating in atmospheric turbulence. J Mod Opt 2008; 55(8): 1199-1208. DOI: 10.1080/09500340701627230.
  84. Shchepakina E, Farwell N, Korotkova O. Spectral changes in stochastic light beams propagating in turbulent ocean. Appl Phys B 2011; 105(2): 415. DOI: 10.1007/s00340-011-4626-9.
  85. Nikishov VV, Nikishov VI. Spectrum of turbulent fluctuation of the sea-water refractive index. International Journal of Fluid Mechanics Research 2000; 27(1): 82-98. DOI: 10.1615/InterJFluidMechRes.v27.i1.70.
  86. Alford M, Gerdt D, Adkins C. An ocean refractometer: resolving millimeter-scale turbulent density fluctuations via the refractive index. Journal of Atmospheric and Oceanic Technology 2006; 23(1): 121-137. DOI: 10.1175/JTECH1830.1.
  87. Schmitt JM, Kumar G. Turbulent nature of refractive-index variations in biological tissue. Opt Lett 1996; 21(16): 1310-1312. DOI: 10.1364/OL.21.001310.
  88. Schmitt JM, Kumar G. Optical scattering properties of soft tissue: a discrete particle model. Appl Opt 1998; 37(13): 2788-2797. DOI: 10.1364/AO.37.002788.
  89. Hill RJ. Optical propagation in turbulent water. J Opt Soc Am 1978; 68(8): 1067-1072. DOI: 10.1364/JOSA.68.001067.
  90. Wolf E. New theory of partial coherence in the space–frequency domain. Part I: spectra and cross spectra of steady-state sources. J Opt Soc Am 1982; 72(3): 343-351. DOI: 10.1364/JOSA.72.000343.
  91. Mercer J. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society A 1909; 209: 441-458.
  92. Mei Z, Korotkova O. Random sources generating ring-shaped beams. Opt Lett 2013; 38(2): 91-93. DOI: 10.1364/OL.38.000091.
  93. Zhou Y, Yuan Y, Qu J, Huang W. Propagation properties of Laguerre-Gaussian correlated Schell-model beam in non-Kolmogorov turbulence. Optics Express 2016; 24: 10682-10693. DOI: 10.1364/OE.24.010682.
  94. Cang J, Xiu P, Liu X. Propagation of Laguerre-Gaussian and Bessel-Gaussian Schell-model beams through paraxial optical systems in turbulent atmosphere. Optics and Laser Technology 2013; 54(30): 35-41. DOI: 10.1016/j.optlastec.2013.05.002.
  95. Korotkova O. Random sources for rectangular far fields. Opt Lett 2014; 39(1): 64-67. DOI: 10.1364/OL.39.000064.
  96. Ishimaru A. Wave propagation and scattering in random media. Piscataway, NJ: IEEE Press, 1997. ISBN: 0-7803-4717-X.
  97. Moscoso M, Keller JB, Papanicolaou G. Depolarization and blurring of optical images by biological tissue. J Opt Soc Am A 2001; 18(4): 948-960. DOI: 10.1364/JOSAA.18.000948.
  98. Xu M, Alfano RR. Fractal mechanisms of light scattreing in biological tissue and cells. Opt Lett 2005; 30(22): 3051-3053. DOI: 10.1364/OL.30.003051.
  99. Sheppard CJR. Fractal model of light scattering in biological tissue and cells. Opt Lett 2007; 32(2): 142-144. DOI: 10.1364/OL.32.000142.
  100. Korotkova O, Shchepakina E. Tuning the spectral composition of random beams propagating in free space and in a turbulent atmosphere. J Opt 2013; 15(7): 075714. DOI: 10.1088/2040-8978/15/7/075714.
  101. Shchepakina Е, Korotkova O. Spectral Gaussian Schell-model beams. Opt Lett 2013; 38(13): 2233-2236. DOI: 10.1364/OL.38.002233.
  102. Sahin S, Korotkova O. Light sources generating far fields with tunable flat profiles. Opt Lett 2012; 37(14): 2970-2972. DOI: 10.1364/OL.37.002970.
  103. Korotkova O, Sahin S, Shchepakina E. Multi-Gaussian Schell-model beams. J Opt Soc Am A 2012; 29(10): 2159-2164. DOI: 10.1364/JOSAA.29.002159.
  104. Korotkova O, Shchepakina E. Random sources for optical frames. Optics Express 2014; 22(9): 10622-10633. DOI: 10.1364/OE.22.010622.
  105. Zhang Y, Cai Y. Random source generating far field with elloptical flat-topped beam profile. J Opt 2014; 16(7): 075704. DOI: 10.1088/2040-8978/16/7/075704.
  106. Chen Y, Gu J, Wang F, Cai Y. Self-splitiing properties of a Hermite-Gaussian correlated Schell-model beams. Phys Rev A 2015; 91: 013823. DOI: 10.1103/PhysRevA.91.013823.
  107. Ma L, Ponomarenko SA.Optical coherence gratings and lattices. Opt Lett 2014; 39(23): 6656-6659. DOI: 10.1364/OL.39.006656.
  108. Mei Z.Two types of sinc Schell-model beams and their propagation characteristics. Opt Lett 2014; 39(14): 4188-4191. DOI: 10.1364/OL.39.004188.
  109. Mei Z, Zhao D, Korotkova O, Mao Y. Gaussian Schell-model arrays. Opt Lett 2015; 40(23): 5662-5665. DOI: 10.1364/OL.40.005662.
  110. Wang F, Korotkova O. Random sources for beams with azimuthal intensity variation. Opt Lett 2016; 41(3): 516-519. DOI: 10.1364/OL.41.000516.
  111. Li J, Wang F, Korotkova O. Random sources for cusped beams. Optics Express 2016; 24(16): 17779-17791. DOI: 10.1364/OE.24.017779.
  112. Mei Z. Light sources generating self-splitting beams and their propagation in non-Kolmogorov turbulence. Optics Express 2014; 22(11): 13029-13040. DOI: 10.1364/OE.22.013029.
  113. Lu C, Zhao D. Propagation of electromagnetic multi-Gaussian Schell-model beams with astigmatic aberration in turbulent ocean. Appl Opt 2016; 55(29): 8196-8200. DOI: 10.1364/AO.55.008196.
  114. Yu J, Chen Y, Liu L, Liu X, Cai Y. Splitting and combining properties of an elegant Hermite-Gaussian correlated Schell-model beam in Kolmogorov and non-Kolmogorov turbulence. Opt Express 2015; 23(10): 13467-13481. DOI: 10.1364/OE.23.013467.
  115. Mao Y, Mei Z, Gu J. Propagation of Gaussian Schell-model array beams in free space and atmospheric turbulence. Optics & Laser Technology 2016; 86: 14-20. DOI: 10.1016/j.optlastec.2016.06.007.
  116. Lajunen H, Saastamoinen T. Propagation characteristics of partially coherent beams with spatially varying correlations. Opt Lett 2011; 36(20): 4104-4106. DOI: 10.1364/OL.36.004104.
  117. Tong Z, Korotkova O. Nonuniformly correlated light beams in uniformly correlated media. Opt Lett 2012; 37(15): 3240-3242. DOI: 10.1364/OL.37.003240.
  118. Mei Zh, Korotkova O. Cosine-Gaussian Schell-model sources. Opt Lett 2013; 38(14): 2578-2580. DOI: 10.1364/OL.38.002578.
  119. Mei Zh, Shchepakina E, Korotkova O. Propagation of Cosine-Gaussian correlated Schell-model beams in atmospheric turbulence. Optics Express 2013; 21(15): 17512-17519. DOI: 10.1364/OE.21.017512.
  120. Aksenov VP, Pogutsa ChE. Increase in laser beam resistance to random inhomogeneities of atmospheric permittivity with an optical vortex included in the beam structure. Appl Opt 2012; 51(30): 7262-7267. DOI: 10.1364/AO.51.007262.
  121. Kazanskiy NL. Research complex solutions for computer optics problems [In Russian]. Computer Optics 2006; 29: 58-77.
  122. Gbur G, Visser TD, Wolf E. 'Hidden' singularities in partially coherent wavefields. J Opt A: Pure Appl Opt 2004; 6(5): S239-S242. DOI: 10.1088/1464-4258/6/5/017.
  123. Gbur G, Swartzlander GA. Complete transverse representation of a correlation singularity. JOSA B 2008; 25(9): 1422-1429. DOI: 10.1364/JOSAB.25.001422.
  124. Chen B, Chen Z, Pu J. Propagation of partially coherent Bessel-Gaussian beams in turbulent atmosphere. Optics & Laser Technology 2008; 40(6): 820-827. DOI: 10.1016/j.optlastec.2007.11.011.
  125. Lukin VP, Konyaev PA, Sennikov VA. Beam spreading of vortex beams propagating in turbulent atmosphere. Appl Opt 2012; 51(10): C84-C87. DOI: 10.1364/AO.51.000C84.
  126. Chen Z, Li C, Ding P, Pu J, Zhao D. Experimental investigation on the scintillation index of vortex beams propagating in simulated atmospheric turbulence. Appl Phys B 2012; 107(2): 469-472. DOI: 10.1007/s00340-012-4943-7.
  127. Li J, Zhang H, Lu B. Partially coherent vortex beams propagating through slant atmospheric turbulence and coherence vortex evolution. Optics & Laser Technology 2010; 42(2): 428-433. DOI: 10.1016/j.optlas­tec.2009.08.019.
  128. Cheng W, Haus JW, Zhan Q. Propagation of vector vortex beams through a turbulent atmosphere. Optics Express 2009; 17(20): 17829-17836. DOI: 10.1364/OE.17.017829.
  129. Liu X, Pu J. Investigation on the scintillation reduction of elliptical vortex beams propagating in atmospheric turbulence. Optics Express 2011; 19(27): 26444-26450. DOI: 10.1364/OE.19.026444.
  130. Gibson G, Courtial J, Padgett MJ, Vasnetsov M, Pas’ko V, Barnett SM, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express 2004; 12(22): 5448-5456. DOI: 10.1364/OPEX.12.005448.
  131. Celechovský R, Bouchal Z. Optical implementation of the vortex information channel. New J Phys 2007; 9(9): 328. DOI: 10.1088/1367-2630/9/9/328.
  132. Khonina SN, Kazanskiy NL, Soifer VA. Optical vortices in a fiber: mode division multiplexing and multimode self-imaging. In book: Yasin M, Harun SW, Arof H, eds. Recent progress in optical fiber research. Chapter 15. Rijeka, Croatia: InTech; 2012. ISBN 978-953-307-823-6.
  133. Anguita JA, Neifeld MA, Vasic BV. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link. Appl Opt 2008; 47(13): 2414-2429. DOI: 10.1364/AO.47.002414.
  134. Soifer VA, Golub MA. Laser beam mode selection by computer-generated holograms. Boca Raton: CRC Press; 1994. ISBN 0-8493-2476-9.
  135. Berdagué S, Facq P. Mode division multiplexing in optical fibers. Appl Opt 1982; 21(11): 1950-1955. DOI: 10.1364/AO.21.001950.
  136. Anderson DZ, Bolshtyansky MA, Zel’dovich BYa. Stabilization of the speckle pattern of a multimode fiber undergoing bending. Opt Lett 1996; 21(11): 785-787. DOI: 10.1364/OL.21.000785.
  137. Bolshtyansky MA, Zel’dovich BYa. Stabilization of transmission function: theory for an ultrathin endoscope of one multimode fiber. Appl Opt 1997; 36(16): 3673-3681. DOI: 10.1364/AO.36.003673.
  138. Shinmura Y, Ezoe H, Yoshikawa M. Observation of mode in graded-index optical fibers with bending and cross talk in MDM. IEICE Transactions on Electronics 1997; E80-C(6): 828-830.
  139. Marcuse D. Theory of dielectric optical waveguides. New York: Academic Press, Inc.; 1974.
  140. Raddatz L, White IH, Cunningham DG, Nowell MC. An experimental and theoretical study of the offset launch technique for the enhancement of the bandwidth of multimode fibre links. Journal of Lightwave Technology 1998; 16(3): 324-331.
  141. Stuart HR. Dispersive multiplexing in multimode fiber. In: Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2000) 2000; ThV2.
  142. Koonen T, van den Boom H, Willems F, Bergmans J, Khoe G-D. Mode group diversity multiplexing for multi-service in-house networks using multi-mode polymer optical fibre. Proceedings Symposium IEEE/LEOS Benelux Chapter. Amsterdam; 2002: 183-186.
  143. Sakaguchi J, Awaji Y, Wada N, Kanno A, Kawanishi T, Hayashi T, Taru T, Kobayashi T, Watanabe M. Space Division Multiplexed Transmission of 109-Tb/s Data Signals Using Homogeneous Seven-Core Fiber. Journal of Lightwave Technology 2012; 30(4): 658-665. DOI: 10.1109/JLT.2011.2180509.
  144. Huang H, Xie G, Yan Y, Ahmed N, Ren Y, Yue Y, Rogawski D, Willner MJ, Erkmen BI, Birnbaum KM, Dolinar SJ, Lavery MPJ, Padgett MJ, Tur M, Willner AE. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Opt Lett 2014; 39(2): 197-200. DOI: 10.1364/OL.39.000197.
  145. Mohammadi SM, Daldorff LKS, Bergman JES, Karlsson RL, Thide B, Forozesh K, Carozzi TD, Isham B. Orbital angular momentum in radio – a system study. IEEE Trans Antennas Propag 2010; 58(2): 565-572. DOI: 10.1109/TAP.2009.2037701.
  146. Yan Y, Xie G, Lavery MPJ, Huang H, Ahmed N, Bao C, Ren Y, Cao Y, Li L, Zhao Zh, Molisch AF, Tur M, Padgett MJ, Willner AE. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nature Communications 2014; 5: 4876. DOI: 10.1038/ncomms5876.
  147. Poole CD, Wang S-C. Bend-induced loss for the higher-order spatial mode in a dual-mode fiber. Opt Lett 1993; 18(20): 1712-1714. DOI: 10.1364/OL.18.001712.
  148. Hwang IK, Yun SH, Kim BY. Long-period fiber gratings based on periodic microbends. Opt Lett 1999; 24(18): 1263-1265. DOI: 10.1364/OL.24.001263.
  149. Lee KS, Erdogan T. Fiber mode conversion with tilted gratings in an optical fiber. J Opt Soc Am A 2001; 18(5): 1176-1185. DOI: 10.1364/JOSAA.18.001176.
  150. Thornburg WQ, Corrado BJ, Zhu XD. Selective launching of higher-order modes into an optical fiber with an optical phase shifter. Opt Lett 1994; 19(7): 454-456. DOI: 10.1364/OL.19.000454.
  151. Poon AW, Chang RK, Lock JA. Spiral morphology-dependent resonances in an optical fiber: effects of fiber tilt and focused Gaussian beam illumination. Opt Lett 1998; 23(14): 1105-1107. DOI: 10.1364/OL.23.001105.
  152. Bolshtyansky MA, Savchenko AYu, Zel’dovich BYa. Use of skew rays in multimode fibers to generate speckle field with nonzero vorticity. Opt Lett 1999; 24(7): 433-435. DOI: 10.1364/OL.24.000433.
  153. Dubois F, Emplit Ph, Hugon O. Selective mode excitation in graded-index multimode fiber by a computer-generated optical mask. Opt Lett 1994; 19(7): 433-435. DOI: 10.1364/OL.19.000433.
  154. Soifer VA, ed., Kotlyar VV, Kazanskiy NL, Doskolovich LL, Kharitonov SI, Khonina SN, Pavelyev VS, Skidanov RV, Volkov AV, Golovashkin DL, Solovyev VS, Usplenyev GV. Methods for Computer Design of Diffractive Optical Elements. New York: John Wiley & Sons, Inc.; 2002. ISBN: 978-0-471-09533-0.
  155. Soifer VA, ed., Bezus EA, Bykov DA, Doskolovich LL, Kazanskiy NL, Karpeev SV, Morozov AA, Seraphimovich PG, Skidanov RV, Kharitonov SN, Khonina SN. Nanophotonics and its application in remote sensing systems [In Russian]. Samara: “Novaya Tehnika” Publisher; 2016.
  156. Karpeev SV, Pavelyev VS, Duparre M, Luedge B, Rockstuhl C, Schroeter S. DOE-aided Analysis and Generation of Transverse Coherent Light Modes in a Stepped-Index Optical Fiber. Optical Memory And Neural Networks (Information Optics) 2003; 12(1): 27-34.
  157. Karpeev SV, Kazanskiy NL, Pavelyev VS, Duparre M, Luedge B, Schroeter S. Step-like fiber modes excitement with binary phase DOEs. Optical Memory & Neural Networks (Information Optics) 2005; 14(4): 223-228.
  158. Khonina SN, Karpeev SV. Excitation and detection of angular harmonics in an optical fiber using DOE [In Russian]. Computer Optics 2004; 26: 16-26.
  159. Karpeev SV, Khonina SN. Experimental excitation and detection of angular harmonics in a step-index optical fiber. Optical Memory & Neural Networks (Information Optics) 2007; 16(4): 295-300. DOI: 10.3103/S1060992X07040133.
  160. Nye JF, Berry MV. Dislocations in wave trains, Proc of Royal Soc A 1974; 336(1605): 165-190. DOI: 10.1098/rspa.1974.0012.
  161. Andrews DL, ed. Structured light and its applications: an introduction to phase-structured beams and nanoscale optical forces. Burlington, MA, San Diego, California, London, UK: Elsevier Inc.; 2008. ISBN: 978-0-12-374027-4.
  162. Bereznyi AE, Prokhorov AM, Sisakyan IN, Soifer VA. Bessel-optics [In Russian]. Doklady Akademii Nauk SSSR 1984; 274(4): 802-804.
  163. Khonina SN, Kotlyar VV, Shinkarev MV, Soifer VA, Uspleniev GV. The rotor phase filter. J Mod Opt 1992; 39(5): 1147-1154. DOI: 10.1080/09500349214551151.
  164. Kotlyar VV, Almazov AA, Khonina SN, Soifer VA, Elfstrom H, Turunen J. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. J Opt Soc Am A 2005; 22(5): 849-861. DOI: 10.1364/JOSAA.22.000849.
  165. Bazhenov VYu, Soskin MS, Vasnetsov MV. Screw dislocations in light wavefronts. J Mod Opt 1992; 39(5): 985-990. DOI: 10.1080/09500349214551011.
  166. Heckenberg NR, McDuff R, Smith CP, White AG. Generation of optical phase singularities by computer-generated holograms. Opt Lett 1992; 17(3): 221-223. DOI: 10.1364/OL.17.000221.
  167. Khonina SN, Kotlyar VV, Soifer VA, Lautanen J, Honkanen M, Turunen J. Generating a couple of rotating nondiffracting beams using a binary-phase DOE. Optik 1999; 110(3): 137-144.
  168. Kotlyar VV, Khonina SN, Skidanov RV, Soifer VA. Rotation of laser beams with zero of the orbital angular momentum. Optics Communications 2007; 274(1): 8-14. DOI: 10.1016/j.optcom.2007.01.059.
  169. Berry MV. Optical vortices evolving from helicoidal integer and fractional phase steps. J Opt A: Pure Appl Opt 2004; 6: 259-268. DOI: 0.1088/1464-4258/6/2/018.
  170. Khonina SN, Porfirev AP, Ustinov AV. Diffraction patterns with mth order symmetry generated by sectional spiral phase plates. J Opt 2015; 17(12): 125607. DOI: 10.1088/2040-8978/17/12/125607.
  171. McLeod JH. The axicon: a new type optical element. J Opt Soc Am 1954; 44(8): 592-597. DOI: 10.1364/JOSA.44.000592.
  172. Khonina SN, Kotlyar VV, Soifer VA, Shinkaryev MV, Uspleniev GV. Trochoson. Opt Commun 1992; 91(3-4): 158-162. DOI: 10.1016/0030-4018(92)90430-Y.
  173. Volostnikov VG, Abramochkin EG, Losevskii NN. A device for focusing the radiation into the ring. USSR Author's Certificate 1730606, published 22.05.1990. Bulletin 16 of 30.04.1992.
  174. Khonina SN, Karpeev SV, Alferov SV, Savelyev DA, Laukkanen J, Turunen J. Experimental demonstration of the generation of the longitudinal E-field component on the optical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams. J Opt 2013; 15(8): 085704. DOI: 10.1088/2040-8978/15/8/085704.
  175. Degtyarev SA, Porfirev AP, Khonina SN. Photonic nanohelix generated by a binary spiral axicon. Appl Opt 2016; 55(12): B44-B48. DOI: 10.1364/AO.55.000B44.
  176. Kotlyar VV, Skidanov RV, Khonina SN, Soifer VA. Hypergeometric modes. Opt Lett 2007; 32(7): 742-744. DOI: 10.1364/OL.32.000742.
  177. Khonina SN, Balalayev SA, Skidanov RV, Kotlyar VV, Paivanranta B, Turunen J. Encoded binary diffractive element to form hyper-geometric laser beams. J Opt A: Pure and Appl Opt 2009; 11: 065702.
  178. Lyubopytov VS, Tlyavlin AZ, Sultanov AKh, Bagmanov VKh, Khonina SN, Karpeev SV, Kazanskiy NL. Mathematical model of completely optical system for detection of mode propagation parameters in an optical fiber with few-mode operation for adaptive compensation of mode coupling. Computer Optics 2013; 37(3): 352-359.
  179. Kotlyar VV, Khonina SN, Soifer VA. Light field decomposition in angular harmonics by means of diffractive optics. J Mod Opt 1998; 45(7): 1495-1506. DOI: 10.1080/09500349808230644.
  180. Khonina SN, Kotlyar VV, Soifer VA, Paakkonen P, Simonen J, Turunen J. An analysis of the angular momentum of a light field in terms of angular harmonics. J Mod Opt 2001; 48(10): 1543-1557.
  181. Khonina SN, Savelyev DA, Kazanskiy NL. Vortex phase elements as detectors of polarization state. Optics Express 2015; 23(14): 17845-17859. DOI: 10.1364/OE.23.017845.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20