Tight focusing of laser light using a surface plasmon polariton in a silver nano-strip and nano-ring on silica glass
E.S. Kozlova, V.V. Kotlyar


Image Processing Systems Institute оf the RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia

Full text of article: English language.


In this work a solitary surface plasmon-polariton was obtained by using a frequency-dependent finite difference time-domain method for the TM- and radially polarized light at 532 nm, which was propagated through silver nano-elements (a nano-strip and a nano-ring), placed in an aqueous medium. The device's height and width were equal to 20 nm and 215 nm respectively. The intensity of surface plasmon-polariton was four times higher than that of the incident radiation. The full width at half maximum of the nanojet was 138 nm and 158 nm for the case of using a nano-strip and a nano-ring respectively.The results can be used to design devices that allow capturing and moving particles in water or other biofluids.

surface plasmon polaritons, nano-strip, nano-ring, FDTD-method, tight focusing, nanojet.

Kozlova ES, Kotlyar VV. Tight focusing of laser light using a surface plasmon polariton in a silver nano-strip and nano-ring on silica glass. Computer Optics 2016; 40(5): 629-634. DOI: 10.18287/2412-6179-2016-40-5-629-634.


  1. Bezus EA, Doskolovich LL. Phase modulation and refraction of surface plasmon polaritons with parasitic scattering suppression. Computer Optics 2014; 38(4): 623-628. DOI: 10.18287/0134-2452-2014-38-4-623-628.
  2. Bezus EA, Doskolovich LL, Kazanskiy NL. Low-scattering surface plasmon refraction with isotropic materials. Opt Express 2014; 22(11): 13547-13554. DOI: 10.1364/OE.22.013547.
  3. Soifer, VA, Kotlyar VV, Doskolovich LL. Diffractive optical elements in nanofotonics devices [In Russian]. Computer Optics 2009; 33: 352-368.
  4. Kadomina EA, Bezus EA, Doskolovich LL. Resonant photonic-crystal structures with a diffraction grating for refractive index sensing [In Russian]. Computer Optics 2016; 40: 164-172. DOI: 10.18287/2412-6179-2016-40-2-164-172.
  5. Ma R-M, Oulton RF, Sorger VJ, Zhang X. Plasmon lasers: coherent light source at molecular scales. Laser & Photonics Reviews 2013; 7(1): 1-21. DOI: 10.1002/lpor.201100040.
  6. Xie Zh, Yu W, Wang T, Zhang H, Fu Yo, Liu H, Li F, Lu Zh, Sun Q. Plasmonic Nanolithography: A Review. Plasmonics 2011; 6: 565-580. DOI: 10.1007/s11468-011-9237-0.
  7. Han Z, Bozhevolnyi SI. Radiation guiding with surface plasmon polaritons. Reports on Progress in Physics 2013; 76(1): 016402. DOI: 10.1088/0034-4885/76/1/016402.
  8. Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials 2010; 9: 205-213. DOI: 10.1038/nmat2629.
  9. Ozbay E. Plasmonics merging photonics and electronics at nanoscale dimentions. Science 2006; 311(5758): 189-193. DOI: 10.1126/science.1114849.
  10. Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature 2003; 424: 824-830. DOI: 10.1038/nature01937.
  11. Nomura W, Ohtsu M, Yatsui T. Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion. Appl Phys Lett 2005; 86(18): 181108. DOI: 10.1063/1.1920419.
  12. Maier SA, Friedman MD, Barclay PE, Painter O. Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing. Appl Phys Lett 2005; 86(7): 071103. DOI: 10.1063/1.1862340.
  13. Berini P, Charbonneau R, Lahoud N, Mattiussi G. Characterization of long-range surface-plasmon-polariton wave­guides. J Appl Phys 2005; 98(4): 043109. DOI: 10.1063/1.2008385.
  14. Bozhevilnyi SI, Volkov VS, Devaux E, Ebbesen TW. Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves. Phys Rev Lett 2005; 95: 046802. DOI: 10.1103/PhysRevLett.95.046802.
  15. Bozhevilnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 2006; 440: 508-511. DOI: 10.1038/nature04594.
  16. Krasavin AV, Zheludev NI. Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl Phys Lett 2004; 84(8): 1416-1418. DOI: 10.1063/1.1650904.
  17. Krasavin AV, Zayats AV, Zheludev NI. Active control of surface plasmon–polariton waves. J Opt A: Pure Appl Opt 2005; 7(2): S85. DOI: 10.1088/1464-4258/7/2/011.
  18. Andrew P, Barnes WL. Energy transfer across a metal film mediated by surface plasmon polaritons. Science 2004; 306(5698): 1002-1005. DOI: 10.1126/science.1102992.
  19. Kim ES, Kim YM, Choi KC. Surface plasmon-assisted nano-lithography with a perfect contact aluminum mask of a hexagonal dot array. Plasmonics 2016; 11(5): 1337-1342. DOI: 10.1007/s11468-016-0180-y.
  20. Luo X, Ishihara T. Surface plasmon resonant interference nanolithography technique. Appl Phys Lett 2004; 84(23): 4780-4782. DOI: 10.1063/1.1760221.
  21. Ditlbacher H, Krenn JR, Lamprecht B, Leitner A, Aussenegg FR. Spectrally coded optical data storage by metal nanoparticles. Opt Lett 2000; 25(8): 563-565. DOI: 10.1364/OL.25.000563.
  22. Kim S, Jin J, Kim Yo-J, Park I-Yo, Kim Yu, Kim S-W. High-harmonic generation by resonant plasmon field enhancement. Nature 2008; 453(7196): 757-760. DOI: 10.1038/nature07012.
  23. Søndergaard T. and Bozhevolnyi SI. Metal nano-strip optical resonators. Opt Express 2008; 15(7): 4198-4204. DOI: 10.1364/OE.15.004198.
  24. Barnard ES, White JS, Chandran A, Brongersma ML. Spectral properties of plasmonic resonator antennas. Opt Express 2008; 16(21): 16529-16537. DOI: 10.1364/OE.16.016529.
  25. Kozlova ES, Kotlyar VV, Nalimov AG. Comparative modeling of amplitude and phase zone plates [In Russian]. Computer Optics 2015; 39: 687-693. DOI: 10.18287/0134-2452-2015-39-5-687-693.
  26. Couairon A, Sudrie L, Franco M, Prade B, Mysyrowicz A. Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses. Phys Rev B 2005; 71(12): 125435-125441. DOI: 10.1103/PhysRevB.71.125435.
  27. Vial A, Laroche T, Dridi M, Le Cunff L. A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method. Appl Phys A 2011; 103(3): 849-853. DOI: 10.1007/s00339-010-6224-9.
  28. Huang F, Jiang X, Yuan H, Li S, Yang H, Sun X. Centrally Symmetric Focusing of Surface Plasmon Polaritons with a Rectangular Holes Arrayed Plasmonic Lens. Plasmonics 2016; 1-7. DOI: 10.1007/s11468-016-0220-7.
  29. Liu J, Gao Y, Ran L, Guo K, Lu Z, Liu S. Focusing surface plasmon and constructing central symmetry of focal field with linearly polarized light. Appl Phys Lett 2015; 106: 013116. DOI: 10.1063/1.4905307.
  30. Porfirev AP, Kovalev AA, Kotlyar VV. Optical trapping and moving of microparticles using asymmetrical bessel-gaussian beams [In Russian]. Computer Optics 2016; 40(2): 152-157. DOI: 10.18287/2412-6179-2016-40-2-152-157.
  31. Porfirev AP, Skidanov RV. Optical capture of microparticles in special traps [In Russian]. Computer Optics 2012; 36(2): 211-218.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20