Simulation of forming processes with local heating of dual phase steels with use of laser beam shaping systems
R. Bielak, F. Bammer, A. Otto, C. Stiglbrunner, C. Colasse, S.P. Murzin


Vienna University of Technology, Vienna, Austria,
Faurecia Sièges d'Automobile, Caligny, France,
Samara National Research University, Samara, Russia

Full text of article: English language.


Features of laser-assisted warm forming of dual phase steel DP1000 are determined. Simulation of forming processes with local heating is performed. In the simulation procedure, the forming parameters of three dimensional forming were adapted to keep them within tolerable limits even in critical areas as well as identifying the localization and type of critical stresses. The capabilities of Abaqus were extended by use of the Python language to independently evaluate selected element strains, the position of deformed elements within the forming limit diagram and user-defined failure criteria. The simulation led to an adapted forming process permitting a significantly increased bulge forming depth by local laser heating of the forming zones. The developed simulation model shows a satisfactory conformity with experiments, performed using a fibre-coupled laser with a wavelength of 1070 nm and a maximum output power of 1500 W, and a servo bending press TRUMPF TruBend 7018. The required distribution of the laser beam energy can be obtained by using diffractive optical elements. The use of the model for technological operations opens up possibilities not only for the solution of the presented specific objective of laser assisted warm forming, but also for others applications.

local laser heating, steel, warm forming, simulation, beam shaping system, power density distribution.

Bielak R, Bammer F, Otto A, Stiglbrunner C, Colasse C, Murzin SP. Simulation of forming processes with local heating of dual phase steels with use of laser beam shaping systems. Computer Optics 2016; 40(5): 659-667. DOI: 10.18287/2412-6179-2016-40-5-659-667.


  1. Al-Abbasi FM, Nemes JA. Characterizing DP-steels using micromechanical modeling of cells. Comp Mater Sci 2007; 39(2): 402-415. DOI: 10.1016/j.commatsci.2006.07.003.
  2. Amirmaleki M, Samei J, Green DE, van Riemsdijk I, Stewart L. 3D micromechanical modeling of dual phase steels using the representative volume element method. Mech Mater 2016; 101: 27-39. DOI: 10.1016/j.mechmat.2016.07.011.
  3. Huang TT, Gou RB, Dan WJ, Zhang WG. Strain-hardening behaviors of dual phase steels with microstructure features. Mat Sci Eng A 2016; 672: 88-97. DOI: 10.1016/j.msea.2016.06.066.
  4. Farabi N, Chen DL, Zhou Y. Microstructure and mechanical properties of laser welded dissimilar DP600/DP980 dual-phase steel joints. J Alloy Compd 2011; 509(3): 982-989. DOI: 10.1016/j.jallcom.2010.08.158.
  5. Farabi N, Chen DL, Zhou Y. Tensile properties and work hardening behavior of laser-welded dual-phase steel joints. J Mater Eng Perform 2011; 21(2): 222-230. DOI: 10.1007/s11665-011-9865-8.
  6. Jia Q, Guo W, Li W, Zhu Y, Peng P, Zou G. Microstructure and tensile behavior of fiber laser-welded blanks of DP600 and DP980 steels. J Mater Process Tech 2016; 236: 73-83. DOI: 10.1016/j.jmatprotec.2016.05.011.
  7. Kong F, Santhanakrishnan S, Kovacevic R. Numerical modeling and experimental study of thermally induced residual stress in the direct diode laser heat treatment of dual-phase 980 steel. Int J Adv Manuf Tech 2013; 68(9-12): 2419-2430. DOI: 10.1007/s00170-013-4859-3.
  8. Asadi M, Frommeyer G, Aghajani A, Timokhina I, Palkowski H. Local laser heat treatment in dual-phase steels. Metall Mater Trans A 2012; 43(4): 1244-1258. DOI: 10.1007/s11661-011-0943-1.
  9. Karbasian H, Tekkaya AE. A review on hot stamping. J Mater Process Tech 2010; 210(15): 2103-2118. DOI: 10.1016/j.jmatprotec.2010.07.019.
  10. Mori K, Maki S, Tanaka Y. Warm and hot stamping of ultra tensile strength steel sheets using resistance heating. CIRP Ann-Manuf Techn 2009; 54(1): 209-212. DOI: 10.1016/S0007-8506(07)60085-7.
  11. Tong L, Stahel S, Hora P. Modeling for the FE simulation of warm metal forming processes. AIP Conference Proceedings: NUMISHEET 2005; 778: 625. DOI: 10.1063/1.2011292.
  12. Park JC, Seong DY, Yang DY, Cha MH. Development of an innovative bending process employing synchronous incremental heating and incremental forming. In: Hirt G, Tekkaya AE, eds. Special Edition: 10th International Conference on Technology of Plasticity, ICTP 2011. Weinheim: Wiley-VCH Verlag GmbH & Co; 2011.
  13. Lee E-H, Hwang J-S, Lee C-W, Yang D-Y, Yang W-H. A local heating method by near-infrared rays for forming of non-quenchable advanced high-strength steels. J Mater Process Tech 2014; 214(4): 784-793. DOI: 10.1016/j.jmatprotec.2013.11.023.
  14. Lee E-H, Yang D-Y, Yoon JW, Yang W-H. Numerical modeling and analysis for forming process of dual-phase 980 steel exposed to infrared local heating. Int J Solids Struct 2015; 75-76: 211-224. DOI: 10.1016/j.ijsolstr.2015.08.014.
  15. Neugebauer R, Scheffler S, Poprawe R, Weisheit A. Local laser heat treatment of ultra high strength steels to improve formability. Prod Eng 2009; 3(4-5): 347-351. DOI: 10.1007/s11740-009-0186-9.
  16. Romero P, Otero N, Cabrera J, Masague D. Laser assisted conical spin forming of dual phase automotive steel. experimental demonstration of work hardening reduction and forming limit extension. Physics Procedia 2010; 5: 215-225. DOI: 10.1016/j.phpro.2010.08.047.
  17. Bammer F, Holzinger B, Humenberger G, Schuöcker D, Schumi T. Integration of high power lasers in bending tools. Physics Procedia 2010; 5: 205-209. DOI: 10.1016/j.phpro.2010.08.045.
  18. Bammer F, Schumi T, Otto A, Schuöcker D. Laser assisted bending for efficient light-weight-production. Tehnicki Vjesnik 2001; 18(4): 571-576.
  19. Wu-rong W, Chang-wei H, Zhong-hua Z, Xi-cheng W. The limit drawing ratio and formability prediction of advanced high strength dual-phase steels. Materials and Design 2011; 32(6): 3320-3327. DOI: 10.1016/j.matdes.2011.02.021.
  20. Hug E, Martinez M, Chottin J. Temperature and stress state influence on void evolution in a high-strength dual-phase steel. Mat Sci Eng A 2015; 626: 286-295. DOI: 10.1016/j.msea.2014.12.053.
  21. Brecher C, Emonts M, Eckert M. Laser-assisted sheet metal working by the integration of scanner system technology into a progressive die. Physics Procedia 2012; 39: 249-256. DOI: 10.1016/j.phpro.2012.10.036.
  22. Murzin SP. Local laser annealing for aluminium alloy parts. Laser Eng 2016; 33(1-3): 67-76.
  23. Murzin SP. Formation of structures in materials by laser treatment to enhance the performance characteristics of aircraft engine parts. Computer Optics 2016; 40(3): 353-359. DOI: 10.18287/2412-6179-2016-40-3-353-359.
  24. Doskolovich LL, Kazanskiy NL, Soifer VA. DOE for focusing the laser light. In book: Soifer VA, ed. Methods for computer design of diffractive optical elements. New York: John Wiley & Sons Inc.; 2002. ISBN: 978-0-471-09533-8.
  25. Alferov SV, Karpeev SV, Khonina SN, Tukmakov KN, Moiseev OYu, Shulyapov SA, Ivanov KA, Savel’ev-Trofimov AB. On the possibility of controlling laser ablation by tightly focused femtosecond radiation. Quantum Electronics 2014; 44(11): 1061-1065. DOI: 10.1070/QE2014v044n11ABEH015471.
  26. Soifer VA, Kotlyar VV, Khonina SN, Skidanov RV. Remarkable laser beams formed by computer-generated optical elements: properties and applications. Proc SPIE 2006; 6252: 62521B. DOI: 10.1117/12.677054.
  27. Pavelyev VS, Borodin SA, Kazanskiy NL, Kostyuk GF, Volkov AV. Formation of diffractive microrelief on diamond film surface. Opt Laser Technol 2007; 39(6): 1234-1238. DOI: 10.1016/j.optlastec.2006.08.004.
  28. SSAB, 2012. Mechanical properties of heat treated steel, Technical Report N1.97BC.07.0178, 2012.
  29. ISO 12004-2:2008, 2008. Metallic materials – Sheet and strip – Determination of forming-limit curves – Part 2: Determination of forming-limit curves in the laboratory. ISO/TC 164/SC 2. ICS: 77.040.10. Stage: 90.93.
  30. Abaqus, 2014, Version 6.14. Documentation.
  31. Shvets IT. Contact heat transfer between plane metal surfaces. International Chemical Engineering 1964; 4(4): 621-624.
  32. Yanagida A, Azushima A. Evaluation of coefficients of friction in hot stamping by hot flat drawing test. CIRP Ann-Manuf Techn 2009; 58(1): 247-250. DOI: 10.1016/j.cirp.2009.03.091.
  33. Ustinov AV, Khonina SN. Calculating the complex transmission function of refractive axicons. Optical Memory and Neural Networks (Information Optics) 2012; 21(3): 133-144. DOI: 10.3103/S1060992X1203006X.
  34. Doskolovich LL, Khonina SN, Kotlyar VV, Nikolsky IV, Soifer VA, Uspleniev GV. Focusators into a ring. Optical and Quantum Electronics 1993; 25(11): 801-814. DOI: 10.1007/BF00430188.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail:; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20