Tunable diffraction grating with transparent indium-tin oxide electrodes on a lithium niobate X-cut crystal
V.D. Paranin, S.V. Karpeev, K.N. Tukmakov, B.O. Volodkin


Image Processing Systems Institute оf RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia

Full text of article: English language.



A tunable diffraction grating based on an electrooptic X-cut lithium niobate crystal has been manufactured and experimentally analyzed. The period of electrodes is 290 μm, the electrode width is 117.5 μm, and the thickness of an electrode is 150 – 160 nm. The electrodes are made of a transparent conducting indium-tin oxide that serves as an antireflection coating with the aim of increasing the optical transmission. In order to prevent crystal polarization switching and electrical breakdown an optimized electrode topology with end ellipticity 1:1 and increased interelectrode gap is used.
The optical diagram of the tunable grating with alternating electrode potentials for various gap voltages is analyzed. The intensity of the zero order of diffraction is shown to decrease by 40 % at a voltage of 800 V. At the same time, the origination of new diffraction orders at angles ± λ / (2d) is noted. The measurement of the forward-bias and reverse-bias regions of the modulation characteristic reveals the absence of hysteresis, which confirms the correctness of the electrode topology design.

tunable diffraction grating, linear electro-optical effect, lithium niobate.

Paranin VD, Karpeev SV, Tukmakov KN, Volodkin BO. Tunable diffraction grating with transparent indium-tin oxide electrodes on a lithium niobate X-cut crystal. Computer Optics 2016; 40(5): 685-688. DOI: 10.18287/2412-6179-2016-40-5-685-688.


  1. Ye Q, Dong Z, Qu R, Fang Z. Experimental investigation of optical beam deflection based on PLZT electro-optic ceramic. Optics Express 2007; 15(25): 16933-16944. DOI: 10.1364/OE.15.016933.
  2. Ye Q, Qiao L, Cai H, Qu R. High-efficiency electrically tunable phase diffraction grating based on a transparent lead magnesium niobate-lead titanite electro-optic ceramic. Optics Letters 2011; 36(13): 2453-2455. DOI: 10.1364/OL.36.002453.
  3. Li Y, Li J, Zhou Z, Bhalla A, Guo R. Optical and Electrooptic Properties of Potassium Lithium Tantalate Niobate Single Crystals. Proc SPIE 2011; 8120: 81201S. DOI: 10.1117/12.904988.
  4. Wang Z, Sun W, Chen A, Kosilkin I, Bale D, Dalton LR. Organic electro-optic thin films by simultaneous vacuum deposition and laser-assisted poling. Optics Letters 2011; 36(15): 2853-2855. DOI: 10.1364/OL.36.002853.
  5. Spreiter R, Bosshard Ch, Pan F, Gunter P. High-frequency response and acoustic phonon contribution of the linear electro-optic effect in DAST. Optics Letters 1997; 22(8): 564-566. DOI: 10.1364/OL.22.000564.
  6. Volk TR, Ivanov NR, Isakov DV, Ivleva LI, Lykov PA. Electro-optical properties of strontium-barium niobate crystals and their relation to the domain structure of the crystals. Phys Solid State 2005; 47(2): 305-311. DOI: 10.1134/1.1866411.
  7. Xu D, Tan G, Wu S-T. Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal. Optics Express 2015; 23(9): 12274-12285. DOI: 10.1364/OE.23.012274.
  8. Paranin VD, Matyunin SA. Modeling tunable diffractive elements based on the linear electro-optic effect. Proc SPIE 2010; 7523: 75230E. DOI: 10.1117/12.852958.
  9. Bussager R, Osman J. Design of PLZT electro-optic beam steering device. Proc SPIE 1996; 2749: 90-100. DOI: 10.1117/12.243092.
  10. Paranin VD. Formation of needle-shaped domains in a surface layer of x-cut lithium niobate. Technical Physics 2014; 59(12): 1869-1873. DOI: 10.1134/S1063784214120226.
  11. Paranin VD. Methods to control parameters of a diffraction grating on the surface of lithium niobate electro-optical crystal. Technical Physics 2014; 59(11): 1723-1727. DOI: 10.1134/S1063784214110206.
  12. Paranin VD. Edge effect of electric field in the tunable diffraction optical elements [In Russian]. In book: Materials of VIII International conference “Basic Problems of Optics (BPO-2014)”, Saint-Petersburg, 20-24 October 2014: 193-194.
  13. May C, Strumpfel J. ITO coating by reactive magnetron sputtering-comparison of properties from DC and MF processing. Thin Solid Films 1999; 351(1-2): 48-52. DOI: 10.1016/S0040-6090(99)00206-0.
  14. Bertran E, Corbella C, Vives M, et al. RF sputtering deposition of Ag/ITO coatings at room temperature.Solid State Ionics 2003; 165(1-4): 139-148. DOI: 10.1016/j.ssi.2003.08.055.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20