The hybrid CPU/GPU implementation of the computational procedure for digital terrain models generation from satellite images
V.A. Fursov, Ye.V. Goshin, A.P. Kotov


Image Processing Systems Institute оf RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia

Full text of article: English language.



In this paper a procedure of building a digital terrain model (DTM) from the satellite images is researched. The procedure is based on the authors' previously developed algorithms of fast image matching for building disparity maps implemented on GPUs (Graphics Processing Units). In this paper we propose a computational procedure for constructing a DTM from the satellite stereo images. Experimental studies have shown that while this procedure constructs a DTM that may be less accurate than the one achieved with the use of the ENVI software, it offers a significantly shorter time of processing.

digital image processing, stereo images, 3D-scene reconstruction, image matching, CUDA-technology, ENVI.

Fursov VA, Goshin YeV, Kotov AP. The hybrid CPU/GPU implementation of the computational procedure for digital terrain models generation from satellite images. Computer Optics 2016; 40(5): 721-728. DOI: 10.18287/2412-6179-2016-40-5-721-728.


  1. Qayyum A, Malik AS, Muhammad Saad MNB. Comparison of digital elevation models based on high resolution satellite stereo imagery. International Conference on Space Science and Communication (IconSpace) 2015: 203-208.
  2. Pandey P, Venkataraman G. Generation and evaluation of Cartosat-1 DEM for Chhota Shigri Glacier, Himalaya. International Journal of Geomatics and Geosciences 2012; 2(3): 704.
  3. Giribabu D, Rao SS, Murthy YK. Improving Cartosat-1 DEM accuracy using synthetic stereo pair and triplet. ISPRS journal of photogrammetry and remote sensing 2013; 77: 31-43. DOI: 10.1016/j.isprsjprs.2012.12.005.
  4. Fraser CS, Hanley HB. Bias-compensated RPCs for sensor orientation of high-resolution satellite imagery. Photogrammetric Engineering & Remote Sensing 2005; 71(8): 909-915. DOI: 10.14358/PERS.71.8.909.
  5. Grodecki J, Dial G. Block adjustment of high-resolution satellite images described by rational polynomials. Photogrammetric Engineering & Remote Sensing 2003; 69(1): 59-68. DOI: 10.14358/PERS.69.1.59.
  6. Paradella WR, Cheng P. Using Geoeye-1 stereo data in mining application: automatic DEM generation. Geoinformatics 2013; 16: 10-12.
  7. Zhou Y, Parsons B, Elliott JR, Barisin I, Walker RT. Assessing the ability of Pleiades stereo imagery to determine height changes in earthquakes: A case study for the El Mayor-Cucapah epicentral area. Journal of Geophysical Research: Solid Earth 2015; 120(12): 8793-8808. DOI: 10.1002/2015JB012358.
  8. User guide ENVI. Source: <>.
  9. User guide PHOTOMOD. Source: <>.
  10. User guide Geomatica. Source: <>.
  11. Gomez-Balderas J-E, Houzet D. A 3D reconstruction from real-time stereoscopic images using GPU. Conference on Design and Architectures for Signal and Image Processing (DASIP 2013) 2013: 253-258.
  12. Pollefeys M, Nistér D, Frahm JM, Akbarzadeh A, Mordohai P, Clipp B, Engels C, Gallup D, Kim S-J, Merrell P, Salmi C, Sinha S, Talton B, Wang L, Yang Q, Stewénius H, Yang R, Welch G, Towles H. Detailed real-time urban 3d reconstruction from video. International Journal of Computer Vision 2008; 78(2-3): 143-167. DOI: 10.1007/s11263-007-0086-4.
  13. Kotov AP, Fursov VA, Goshin EV. Technology for fast 3D-scene reconstruction from stereo images. Computer Optics 2015; 39(4): 600-605. DOI: 10.18287/0134-2452-2015-39-4-600-605.
  14. Baltsavias EP, Stallmann D. SPOT stereo matching for DTM generation. Proc SPIE 1993; 1944: 152-163. DOI: 10.1117/12.155800.
  15. Kadomcev BB. Dynamics and the Information. Izbrannye trudy: in 6 volumes [In Russian]. Moscow: “Fizmatlit” Publisher; 2003: 2; 508-515.
  16. Rational Functional Model. Source: <>.
  17. Forsyth DA, Ponce J. Computer vision: A modern approach. Prentice Hall Professional Technical Reference; 2002. ISBN: 0-130-85198-1.
  18. Hartley RI. Theory and practice of projective rectification. International Journal of Computer Vision 1999; 35(2): 115-127. DOI: 10.1023/A:1008115206617.
  19. Fursov VA, Goshin EV. Information technology for digital terrain model reconstruction from stereo images. Computer Optics 2014; 38(2): 335-342.
  20. Jacobsen K. DEM generation from high resolution satellite imagery. Photogrammetrie-Fernerkundung-Geoinformation 2013; 5: 483-493.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail:; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20